Hormone anabolic

The secretion of hypothalamic, pituitary, and target tissue hormones is under tight regulatory control by a series of feedback and feed- forward loops. This complexity can be demonstrated using the growth hormone (GH) regulatory system as an example. The stimulatory substance growth hormone releasing hormone (GHRH) and the inhibitory substance somatostatin (SS) both products of the hypothalamus, control pituitary GH secretion. Somatostatin is also called growth hormone-inhibiting hormone (GHIH). Under the influence of GHRH, growth hormone is released into the systemic circulation, causing the target tissue to secrete insulin-like growth factor-1, IGF-1. Growth hormone also has other more direct metabolic effects; it is both hyperglycemic and lipolytic. The principal source of systemic IGF-1 is the liver, although most other tissues secrete and contribute to systemic IGF-1. Liver IGF-1 is considered to be the principal regulator of tissue growth. In particular, the IGF-1 secreted by the liver is believed to synchronize growth throughout the body, resulting in a homeostatic balance of tissue size and mass. IGF-1 secreted by peripheral tissues is generally considered to be autocrine or paracrine in its biological action.

Parathyroid hormone (PTH) is essential for the maintenance of calcium homeostasis through, in part, its actions to regulate bone remodeling. While PTH stimulates both bone formation and bone resorption, the duration and periodicity of exposure to PTH governs the net effect on bone mass, that is whether it is catabolic or anabolic. PTH receptor signaling in osteoblasts and osteocytes can increase the RANKL/OPG ratio, increasing both osteoclast recruitment and osteoclast activity, and thereby stimulating bone resorption. In contrast, PTH-induced bone formation is explained, at least in part, by its ability to downregulate SOST/sclerostin expression in osteocytes, permitting the anabolic Wnt signaling pathway to proceed. The two modes of administration of PTH, that is, continuous vs. intermittent, can regulate, in bone cells, different sets of genes; alternatively, the same sets of genes exposed to PTH in sustained vs. transient way, will favor bone resorption or bone formation, respectively. This article reviews the effects of PTH on bone cells that lead to these dual catabolic and anabolic actions on the skeleton.

Return to Volume Index Return to NIH Guide Main Index

Office of Extramural
Research (OER)   National Institutes of Health (NIH)
9000 Rockville Pike
Bethesda, Maryland 20892   Department of Health
and Human Services (HHS)  
Note: For help accessing PDF, RTF, MS Word, Excel, PowerPoint, Audio or Video files, see Help Downloading Files .

Hormone anabolic

hormone anabolic


hormone anabolichormone anabolichormone anabolichormone anabolichormone anabolic